
FugakuNEXT: AI-HPC platform

November 2025 Fujitsu Limited

Fujitsu Challenges on Supercomputer

Future Supercomputing

Trends in HPC Technologies

Ever-Growing data volumes and computation power

Higher computational density and power efficiency

Rapid AI evolution and expansion of applicable areas

AI-HPC platform

- FUJITSU's Arm-based CPU proven in HPC and GPUs optimized for large-scale AI training
- Driving innovation across science, technology, and industry to shape humanity's future

The impact of AI-HPC platform

AI-enhanced Simulation

Significantly improve accuracy and speed by optimize simulation parameters using AI

Data-Driven Science

 Uncover hidden correlations, causalities, and new scientific laws by analyzing massive datasets

Research Process Optimization

 Accelerate scientific discovery by optimizing research workflows from experiment design to insight

Knowledge Discovery

 Discover new hypotheses and knowledge by mining vast scientific papers and literatures.

FugakuNEXT – Japan's Flagship Platform driving "AI for Science"

FugakuNEXT development Goals

Made with Japan

- Joint development of RIKEN, NVIDIA, and Fujitsu
- Create global innovation and collaboration

Technological Breakthroughs

- Tight integration of CPU-GPU for high-bandwidth, heterogeneous nodes
- Achieve over 100× application performance by AI-HPC integration

Sustainability and Continuity

- A sustainable software ecosystem
- Modernization of applications
- Advanced energy-efficient operation technology

R-CCS

RIKEN

 System Design, Software and Application development

CPU and System Development

NVIDIA

GPU development

The FugakuNEXT Ecosystem

- Accelerating scientific progress through AI for Science methodologies
- R&D leadership in advanced computing and AI technologies
- Sustained high-end processor development to secure computational resources

Schedule

CY 2025 2026 2027 2028 2029 2030 2031

Basic Design

 Define overall architecture

Detailed Design

- Develop production readiness plan
- Finalize Software/Hardware Specifications

Manufacturing / Installation

- Produce individual parts and modules
- Prepare for user Acceptance Testing

Operation

 Conduct performance improvements and maintenance activities

Reference: MEXT (2025). Al for Science: Concepts and Directions. https://www.mext.go.jp/content/20251006-mxt_jyohoka01-000045188_03.pdf

© 2025 Fujitsu Limited

The world's top-level AI-HPC platform with Fujitsu CPU and NVIDIA GPU

Designed to deliver up to 100× improvement in application performance.

Specification Comparison

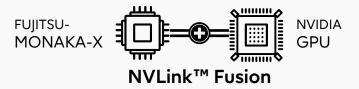
Specification	FugakuNEXT		Fugaku
	CPU	GPU	CPU
Number of Nodes	≧3,400		158,976
FP64 Vector perf.	≥48 PFLOPS	≧2.6 EFLOPS ×4.	537 PFLOPS
FP16/BF16 Matrix perf.	≧1.5 EFLOPS	≧150 EFLOPS ×70 .	5 - 2.15 EFLOPS
FP8 Matrix perf.	≧3.0 EFLOPS	≧300 EFLOPS	-
FP8 Matrix sparsity perf.	-	≧ 600 EFLOPS	-
Memory Capacity	≧10 PiB	≧10 PiB ×4. °	4.85 PiB
Memory BW	≧7 PB/s	≧800 PB/s ≺ 4.	9— 163 PB/s

FUJITSU-MONAKA-X Processor

Arm-based Processor Enhanced for Al

Optimization for HPC

- Next-generation 3D many-core architecture
- 1.4 nm process technology
- Further acceleration through **SIMD extensions**
- Legacy support for existing HPC applications


AI Processing Acceleration

- Arm SME: Implementation of NPU
- · World's first in server-class CPUs
- Enhanced application coverage via GPU collaboration

Power efficiency and reliability

- Ultra-low voltage operation control
- Enhanced security with Confidential Computing
- Robust reliability through RAS functionality

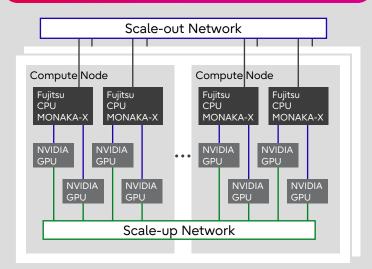
CPU-GPU Tight Integration

Accelerating AI-HPC Converged Workloads via High-Bandwidth, Low-Latency, and Coherent CPU-GPU Access

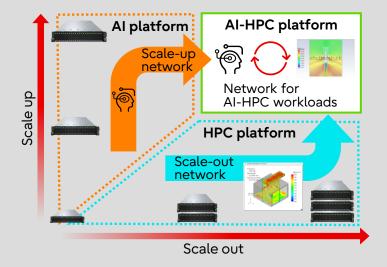
CPU Strengths

- complex control flow, latency-sensitive tasks, and irregular memory access
- √ Simulation, Realtime AI, Multimodal processing

GPU Strengths


- Massively parallel data-parallel execution with regular memory access patterns
- ✓ Large scale DL/ML training, Image/signal recognition

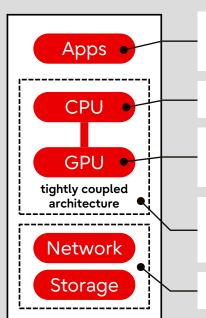
Integrating Scale-up/out network



- Heterogeneous interconnect with Scale-up and Scale-out
- Leverages both scale-up and scale-out capabilities by optimizing at the system level
 - Enhancing AI-HPC integrated workload performance through optimal allocation of network resources
 - Significant performance gains of HPC workloads with effective scale-up network utilization

Heterogeneous Interconnect

Interconnect for AI-HPC platform



Software-Driven 100x Application Performance Over Fugaku

- Achieving 100x application performance necessitates software leveraging hardware far more efficiently.
- We believe total performance optimization, from application to system software, can achieve the goal.

Keys for Achieving 100x Application Performance

Leveraging AI to accelerate simulations

• Hybrid surrogate model & simulation, accuracy-preserving quantization

Fully leveraging MONAKA-X of ultra many core for boosting existing HPC applications

Accelerating high-precision operations with low-precision arithmetic, utilizing like Ozaki Scheme

Harnessing CPU-GPU tightly coupled architecture for application speedup

 Optimal workload & data placement on CPU / GPU to maximize their capabilities (e.g. Large node memory, massively parallel SIMD)

Optimizing data communication for resolving data bottleneck

Thank you

