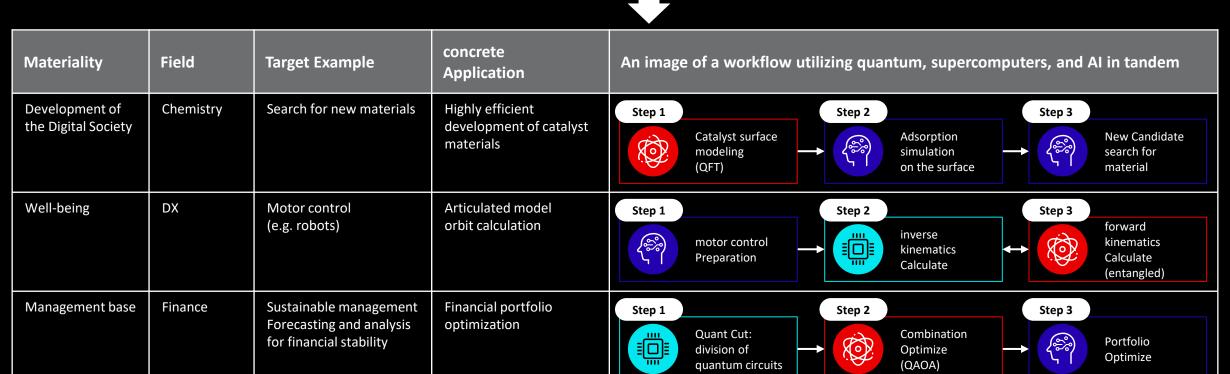

Real-world applications and demos

Applications enabled by the integration of quantum, supercomputing, and AI technologies

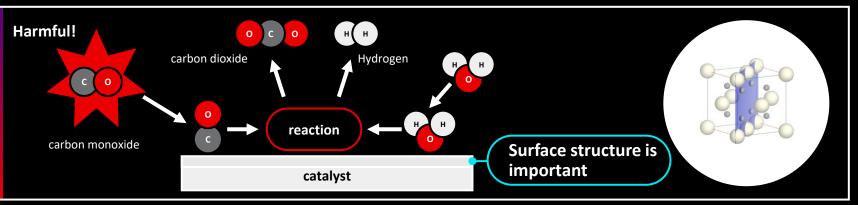

A workflow that combines quantum, supercomputer and AI technologies for the right approach to today's increasingly complex challenges



AI and Optimization

A workflow that combines quantum, supercomputer and AI technologies for the right approach to today's increasingly complex challenges

Al and Optimization


Materiality	Field	Target Example	concrete Application	An image of a workflow utilizing quantum, supercomputers, and AI in tandem					
Development of the Digital Society	Chemistry	Search for new materials	Highly efficient development of catalyst materials	Step 1	Catalyst surface modeling (QFT)	Step 2	Adsorption simulation on the surface	Step :	VI CONTINUE
Well-being	DX	Motor control (e.g. robots)	Articulated model orbit calculation	Step 1	motor control Preparation	Step 2	inverse kinematics Calculate	Step 5	forward
Management base	Finance	Sustainable management Forecasting and analysis for financial stability	Financial portfolio optimization	Step 1	Quant Cut: division of quantum circuits	Step 2	Combination Optimize (QAOA)	Step 5	

Catalyst Discovery

Collaborating with Prof. Sekine, Waseda University

A material that promotes chemical reactions

Step 1

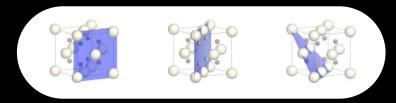
Exploring surface structure of a material

Quantum computation (Quantum Fourier Transform)

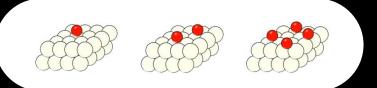
Step 2

Adsorption simulation on the surface

Quantum inspired optimization technology


Step 3

Search for new candidate substances



AI Learning

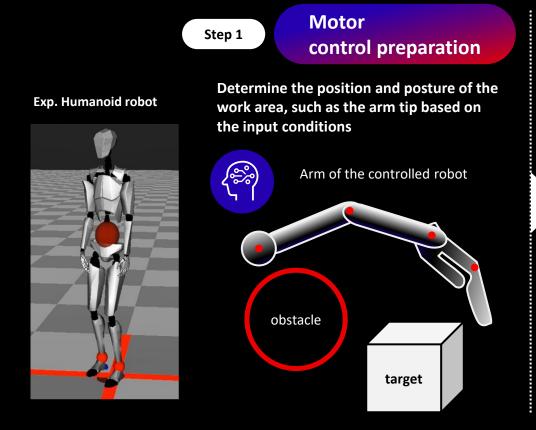
Comprehensive search for the surface cross-sectional structure of catalysts

Simulates the adsorption of materials on each surface

Instead of experiments, we performed calculations of the catalyst's cross-sectional structure and adsorption simulations.

Using the vast amount of generated data to train AI, with the potential to automate the search for new materials

A workflow that combines quantum, supercomputer and AI technologies for the right approach to today's increasingly complex challenges



Al and Optimization

Materiality	Field	Target Example	concrete Application	An image of a workflow utilizing quantum, supercomputers, and AI in tandem
Development of the Digital Society	Chemistry	Search for new materials	Highly efficient development of catalyst materials	Step 1 Catalyst surface modeling (QFT) Step 2 Adsorption simulation on the surface New Candidate search for material
Well-being	DX	Motor control (e.g. robots)	Articulated model orbit calculation	Step 1 Step 2 Step 3 Forward kinematics Calculate (entangled)
Management base	Finance	Sustainable management Forecasting and analysis for financial stability	Financial portfolio optimization	Step 1 Quant Cut: division of quantum circuits Step 2 Combination Optimize (QAOA) Portfolio Optimize

Robot Control

Collaborating with Associate Prof. Otani, Shibaura Institute of Tech./Prof. Takanishi, Waseda University

Realization of attitude control

Alternate between inverse kinematics calculations and forward kinematics calculations to determine detailed posture control.

Step 2

forward kinematic calculation

To efficiently reach a target with your fingertips, predict how the joints will move **1

X1 From the information of the joint angle given, the trajectory is simulated by the quantum circuit including the entangle, and the hand position is solved.

Quantum computation

inverse kinematic calculation


From the information of the target position and the forward kinematics results, it is assumed that it is necessary to reach

Sequential calculation and estimation of joint angle information by time

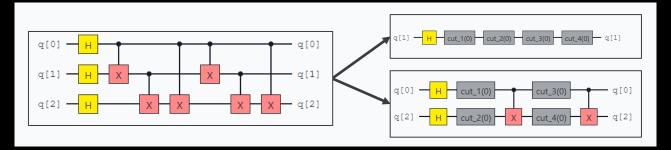
Quantum computing, which directly handles phase information using qubits, enables high-precision robots capable of simultaneously controlling multiple joints—something conventional technology cannot achieve

A workflow that combines quantum, supercomputer and AI technologies for the right approach to today's increasingly complex challenges

Al and Optimization

Materiality	Field	Target Example	concrete Application	An image of a workflow utilizing quantum, supercomputers, and AI in tandem
Development of the Digital Society	Chemistry	Search for new materials	Highly efficient development of catalyst materials	Step 1 Catalyst surface modeling (QFT) Step 2 Adsorption simulation on the surface material New Candidate search for material
Well-being	DX	Motor control (e.g. robots)	Articulated model orbit calculation	Step 1 Step 2 Step 3 forward kinematics Calculate (entangled)
Management base	Finance	Sustainable management Forecasting and analysis for financial stability	Financial portfolio optimization	Step 1 Quant Cut: division of quantum circuits Step 2 Combination Optimize (QAOA) Portfolio Optimize

Financial Portfolio Optimization Application


Step 1

Quant Cut: splitting quantum circuits

Given a quantum circuit,

Divide into multiple smaller quantum circuits

Portfolio optimization calculation

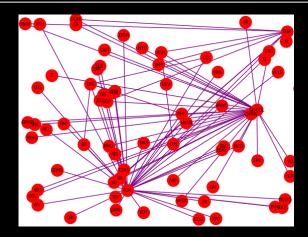
Step 2

Combinatorial optimization

Step 3

Portfolio optimization

Quantum computation
QAOA; quantum approximation
optimization algorithm)



Solve each partitioned quantum circuit using QAOA and integrate the results.

Financial portfolio optimization

The problem of determining the optimal portfolio strategy for purchasing securities to minimize risk during operations

Solve relationships such as the similarity of stock price fluctuations between stocks as a combinatorial optimization problem using mathematical models.

By leveraging Quant Cut technology, it may be possible to compute problems exceeding 1,000 logical qubits even on a machine with 250 logical qubits

Thank you

10 © Fujitsu 2025