

FUJITSU-MONAKA series: Fujitsu's Next Arm-based Processor and Its Approach to HPC and AI

Satoshi NAKAJIMA, Team Director
Advanced Technology Development Unit
Fujitsu Limited, JAPAN
January, 2026

- This presentation is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Technology Cultivated Through the Development of World-Class Supercomputers

Next-Generation arm v9-base CPU
FUJITSU-MONAKA

FUJITSU Processor roadmap

2020

A64FX

- Adopted in the supercomputer Fugaku
- First implementation of Arm SVE

7 nm

2027

FUJITSU-MONAKA

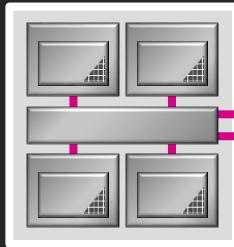
- Realization of high-speed data processing platform
- Achieves both high energy efficiency and performance
- Provides a highly reliable and secure environment

2 nm

2029

FUJITSU-MONAKA-X

- Applies next-generation process node
- Further evolution of AI functionality
- Adopted in FugakuNEXT



1.4 nm

FUJITSU-MONAKA : Beyond Specific Use Cases

FUJITSU-MONAKA

Armv9-A Architecture

3D chiplet
• Core die 2nm
• SRAM die/IO die 5nm

Ultra low voltage
for energy-efficiency

DDR5 12 channels

Liquid / Air-cooling

subject to change without notice

To be shipped in 2027

FUJITSU-MONAKA

High-Performance and Energy-Efficient CPU
for a Carbon-Neutral Digital Society

High-Performance

Achieving high-speed computing centered on AI workloads (2×competitors CPUs).

Power-Efficiency

Reducing CO₂ emissions and electricity costs (2×competitor CPUs).

Goal

Safety & Security

Leveraging mainframe RAS technologies.

Ease of Use

Leveraging armv9 Software ecosystem.

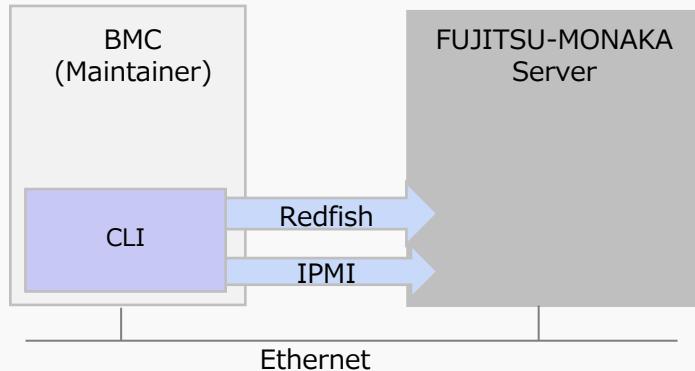
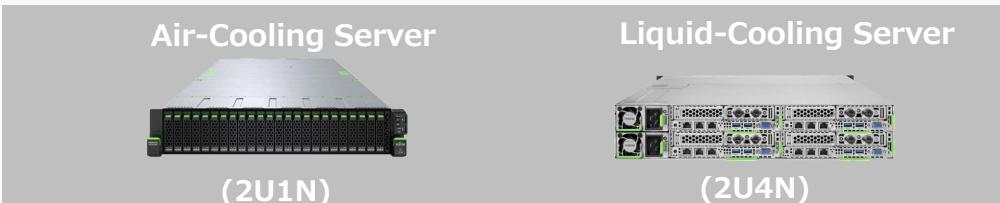
Ease of use: FUJITSU-MONAKA software stack

Support for Standard OSS / ISVs per Domain

- Customers can adopt FUJITSU-MONAKA seamlessly, and enjoy its high performance & energy efficiency, reducing TCO.

Application	Molecular Dynamic	Structural Analysis	CFD	Speech Recognition	Surrogate Model	Generative AI
Frameworks & Inference Engines	PyTorch/TensorFlow	scikit-learn	vLLM	Llama.cpp	ONNX Runtime	
Library & Toolchains	OpenBLAS	NumPy/SciPy	oneDNN	OpenVINO	GCC/LLVM	OpenMPI
OS & Middleware	Linux	Slurm	Kubernetes	OpenStack	Ceph	Lustre
Firmware / Hardware	Arm Processor Utilization & FUJITSU-MONAKA System Development					
	Many Core	High-Capacity Memory	Low Power	Low Cost	Security	

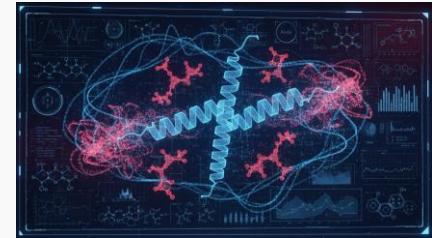
Remark: Here shows part of software lists due to the space limitation. The lists may be subject to change without notice.



Efforts to Expand AI & HPC Adoption in the Arm Ecosystem

- Driving AI & HPC performance improvement & quality enhancement of OSS by leveraging our HPC expertise
- R&D of Surrogate Models for Advanced Industrial AI

Ease of use : Adapting Server standard

- Redfish
 - FUJITSU-MONAKA compliance version
 - Redfish ver. 1.18
 - Redfish Schema Bundle ver. 2023.1
- IPMI
 - FUJITSU-MONAKA compliance version
 - IPMI Specification Second Generation V2.0
- Arm System Ready SR
 - Compliance work is on progress
- Regardless Server factor, easy of use for system maintenance


● Redfish and IPMI Function overview

Redfish	Redfish	IPMI
Power On/Off	<input type="radio"/>	<input type="radio"/>
Inventory information(system config)	<input type="radio"/>	<input type="radio"/>
Power and thermal monitoring	<input type="radio"/>	<input type="radio"/>
Failure monitoring	<input type="radio"/>	<input type="radio"/>
Operation log collection	<input type="radio"/>	<input type="radio"/>
Power management	<input type="radio"/>	—
Mode configuration(Boot option, etc)	<input type="radio"/>	<input type="radio"/>
Firmware update(BIOS/BMC)	<input type="radio"/>	—

Ease of use : Value of SVE2 in HPC applications

- Traditional HPC was defined by FP64 performance and parallel scalability.
- Fugaku HPC evolved HPC market by integrating aarch64 and expanding the OSS ecosystem beyond FP64.
- FUJITSU-MONAKA advances this evolution, with SVE2 enabling broader and more efficient HPC applications

FP64 parallelization

SVE & arm ecosystem
in HPC

FUJITSU-MONAKA
for HPC applications

Summary

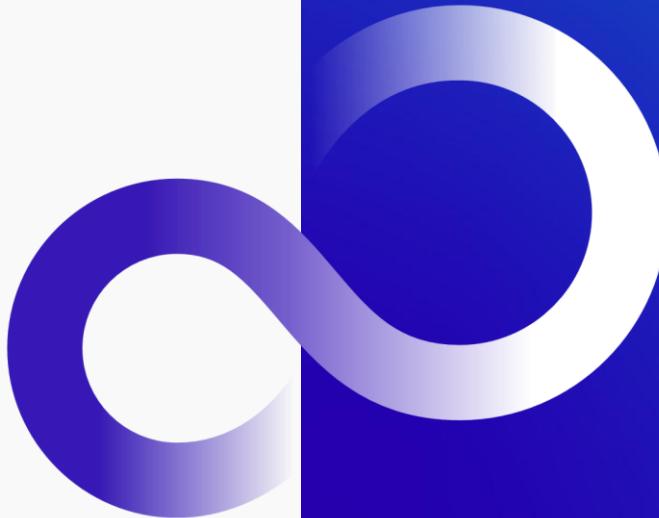
Two types of servers to meet customer needs, available from 2027

*PoC with demo systems start in 2026

Air-Cooling Server

2U1N

High-performance air-cooled server
with excellent installation and scalability.


Liquid-Cooling Server

2U4N

High-density liquid-cooled server
designed for heavy-load processing.

Thank you

* This presentation is based on results obtained from a project
subsidized by the New Energy and Industrial Technology Development
Organization (NEDO).