O PyTorch

CONFERENCE 2025

Efficient INT8 Inference on ARM:
Leveraging PyTorch 2 Export Quantization

N Maajid Khan, Devang Choudhary, Abhishek Jain "

Fujitsu Research of India Pvt. Ltd.

With the rapid adoption of ARM CPUs across cloud and edge environments,
high-performance quantized inference in PyTorch on ARM is now critical for research and
production. Previously, PT2E inference used only FP32 kernels, limiting acceleration and
efficiency. We introduce enhancements to the PyTorch 2 Export Quantization (PT2E)
workflow, unlocking efficient INT8 inference for ARM targets.

Our contributions include:

- ARM Backend Integration: Extending the PT2E quantization path from x86 to ARM CPUs,
leveraging oneDNN |IT and Arm Compute Library (ACL) INT8 kernels for operators such as
matrix multiplication and convolution.[1]

- Quantization Granularity & API: Introduced "per_channel" quantized weights (with
"per_tensor" planned) and updated the API for easy granularity selection. Supports static
and dynamic quantization, with seamless integration of Quantization Aware Training (QAT)
and Post-Training Quantization (PTQ).

- Comprehensive Model Support: Validated on NLP (BERT, T5), vision (ResNet, ViT), and
custom models, demonstrating broad applicability.

These improvements enable out-of-the-box INT8 inference on ARM platforms for scalable,
efficient, portable Al deployment.

Keywords: PyTorch 2 Export (PT2E), ARM CPUs, INT8 Inference, oneDNN.

Methodology

We extend the PyTorch 2 Export (PT2E) quantization stack to enable high-performance
INT8 inference on ARM CPUs. PT2E consolidates quantization support by phasing out
legacy pathways (Eager Mode, TorchScript Graph Mode, FX Graph Mode) into a single
unified stack. The PT2E implementation has also been migrated to torchao, a standalone
library decoupled from PyTorch core, enabling shared reuse of observers, fake quantizers,
and other components.

float_model (Python) Example Input

\ / . [PT2E Standard Flow
export [Fujitsu's Contribution

A4

FX Graph in ATen

——

prepare_pt2e

I
Calibrate / Train

convert_pt2e

v
[Quantized Model]

v

Lowering into Inductor with torch.compile

!

Pattern-match qconv/qlinear/gmatmul to oneDNN ops

ArminductorQuantizer

[) orl\eDNN , l J ACL
INT8 kernels - Conv/Matmu
(AArché4 / SVE) INT8 kernels (AArch64 / SVE)

Figure 1: PT2E quantization workflow extended for ARM CPUs.

As shown in Figure 1, the workflow begins with a floating-point model exported to an FX
Graph in ATen. Fujitsu's key contribution, highlighted in yellow, is the
ArminductorQuantizer, which:

- Applies quantization annotations and recipes during the prepare_pt2e stage.
- Provides default configurations for convolution, linear, and matmul.
- Supports both Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).

- Detects common fusion patterns (e.g., conv+bn, linear+unary) to produce
conversion-ready graphs.

After convert_pt2e, we extend torch.compile (Inductor) with ARM-specific lowering.
Quantized ops (gcony, glinear, gmatmul) are pattern-matched and lowered to oneDNN
primitives, including JIT and Arm Compute Library (ACL) INT8 kernels.

To further enhance the INT8 path, we added new oneDNN |IT INT8 kernels. [2]
« Matmul: Quantized INT8 kernel

« Convolution: BRGEMM with u8:s8:f32 support

- Convolution: BRGEMM with u8:s8:u8 support

These enhancements, validated on NLP (BERT, T5), vision (ResNet, ViT), and custom
models, deliver up to 21x performance gains compared to FP32 while preserving accuracy,
enabling efficient and scalable INT8 inference on ARM.

Abstract (Results

00,
FUJITSU

o«

&,

Fujitsu
Monaka

We evaluated the INT8 PT2E workflow on AWS Graviton3E (AArch64, 32 cores) system
with PyTorch v2.71, oneDNN v3.71, and ACL v52.0.1. Quantization was tested using both
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT), across static and
dynamic modes, with per-channel weight quantization enabled.

Representative models from vision (ResNet50, ViT) and NLP (BERT, T5) were inferenced
using the PT2E API and compiled with Inductor for ARM backends. Inference was run with
tcmalloc enabled and channels-last settings for vision workloads, using average latency
per input (ms) as the metric.

I FP32 Compile Mode N INT8 PT2E

Performance Gains with INT8 PT2E Quantization on ARM CPUs

20.0 1

18.19

17.5 1

15.0 1

12.5 1

10.0 1

7.5

5.0

Inference Time (ms, lower is better)

2.5 1

0.0 -
ResNet50 BERT ViT T5

Deep Learning Models

Figure 2: Performance Gains with INT8 PT2E Quantization on ARM CPUs

Figure 2 demonstrates the speed-up of INT8 PT2E inference compared to FP32 + compile
on an AWS Graviton3E. The reduction in bar height across models highlights the latency
savings.

Results show consistent performance improvements across representative NLP and vision
models: BERT (2.1x), ResNet50 (1.5x), ViT (1.8x), and T5 (1.2x). On average, INT8 PT2E
reduced inference latency by up to 2.1x while maintaining accuracy.

These results validate our ARM backend integration as an important step toward efficient,
scalable, and production-ready INT8 quantization on ARM CPUs.

Conclusion and Future Work

We extend the PT2E quantization stack to enable efficient INT8 inference on ARM CPUs,
aligning with PyTorch’s long-term roadmap of consolidating quantization under PT2E. With
the ArmInductorQuantizer and ARM-specific Inductor lowering, we demonstrate speedups
up to 21x over FP32 across NLP and vision models, validating the effectiveness of our
contributions.

Looking ahead, we plan to enhance the lowering pass, broaden operator coverage and
contribute additional oneDNN |IT-based INT8 kernels.

We will also introduce new fusion patterns for fused operator execution to further
accelerate inference, ensuring robust and production-ready quantization workflows for
ARM within the PyTorch ecosystem.

References

[1] PyTorch 2 Export Quantization.
https://docs.pytorch.org/docs/stable/quantization.html#prototype-pytorch-2-export-quanti
zation

[2] Scalable Vector Extensions, Arm Developer.
https://developerarm.com/Architectures/Scalable%20
Vector%20Extensions

Links to pull requests

O30

ARM Backend
Integration

Convolution
oneDNN INTS8 with
u8:s8:u8

Convolution
oneDNN INT8 with
u8:s8:f32

Quantization Matmul oneDNN
Granularity & API INT8

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

