
E��icient INT8 Inference on ARM:
Leveraging PyTorch 2 Export Quantization
N Maajid Khan, Devang Choudhary, Abhishek Jain
Fujitsu Research of India Pvt. Ltd.

With the rapid adoption of ARM CPUs across cloud and edge environments,
high-performance quantized inference in PyTorch on ARM is now critical for research and
production. Previously, PT2E inference used only FP32 kernels, limiting acceleration and
e� ficiency. We introduce enhancements to the PyTorch 2 Export Quantization (PT2E)
workflow, unlocking e� ficient INT8 inference for ARM targets.

Our contributions include:
• ARM Backend Integration: Extending the PT2E quantization path from x86 to ARM CPUs,
leveraging oneDNN JIT and Arm Compute Library (ACL) INT8 kernels for operators such as
matrix multiplication and convolution.[1]

• Quantization Granularity & API: Introduced "per_channel" quantized weights (with
"per_tensor" planned) and updated the API for easy granularity selection. Supports static
and dynamic quantization, with seamless integration of Quantization Aware Training (QAT)
and Post-Training Quantization (PTQ).

• Comprehensive Model Support: Validated on NLP (BERT, T5), vision (ResNet, ViT), and
custom models, demonstrating broad applicability.

These improvements enable out-of-the-box INT8 inference on ARM platforms for scalable,
e� ficient, portable AI deployment.

Keywords: PyTorch 2 Export (PT2E), ARM CPUs, INT8 Inference, oneDNN.

Abstract

As shown in Figure 1, the workflow begins with a floating-point model exported to an FX
Graph in ATen. Fujitsu’s key contribution, highlighted in yellow, is the
ArmInductorQuantizer, which:
• Applies quantization annotations and recipes during the prepare_pt2e stage.
• Provides default configurations for convolution, linear, and matmul.
• Supports both Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).
• Detects common fusion patterns (e.g., conv+bn, linear+unary) to produce

conversion-ready graphs.

After convert_pt2e, we extend torch.compile (Inductor) with ARM-specific lowering.
Quantized ops (qconv, qlinear, qmatmul) are pattern-matched and lowered to oneDNN
primitives, including JIT and Arm Compute Library (ACL) INT8 kernels.

To further enhance the INT8 path, we added new oneDNN JIT INT8 kernels. [2]
• Matmul: Quantized INT8 kernel
• Convolution: BRGEMM with u8:s8:f32 support
• Convolution: BRGEMM with u8:s8:u8 support

These enhancements, validated on NLP (BERT, T5), vision (ResNet, ViT), and custom
models, deliver up to 2.1x performance gains compared to FP32 while preserving accuracy,
enabling e� ficient and scalable INT8 inference on ARM.

Methodology

We evaluated the INT8 PT2E workflow on AWS Graviton3E (AArch64, 32 cores) system
with PyTorch v2.7.1, oneDNN v3.7.1, and ACL v52.0.1. Quantization was tested using both
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT), across static and
dynamic modes, with per-channel weight quantization enabled.

Representative models from vision (ResNet50, ViT) and NLP (BERT, T5) were inferenced
using the PT2E API and compiled with Inductor for ARM backends. Inference was run with
tcmalloc enabled and channels-last settings for vision workloads, using average latency
per input (ms) as the metric.

Figure 2 demonstrates the speed-up of INT8 PT2E inference compared to FP32 + compile
on an AWS Graviton3E. The reduction in bar height across models highlights the latency
savings.

Results show consistent performance improvements across representative NLP and vision
models: BERT (2.1x), ResNet50 (1.5x), ViT (1.8x), and T5 (1.2x). On average, INT8 PT2E
reduced inference latency by up to 2.1x while maintaining accuracy.

These results validate our ARM backend integration as an important step toward e� ficient,
scalable, and production-ready INT8 quantization on ARM CPUs.

Results

We extend the PT2E quantization stack to enable e� ficient INT8 inference on ARM CPUs,
aligning with PyTorch’s long-term roadmap of consolidating quantization under PT2E. With
the ArmInductorQuantizer and ARM-specific Inductor lowering, we demonstrate speedups
up to 2.1x over FP32 across NLP and vision models, validating the e� fectiveness of our
contributions.

Looking ahead, we plan to enhance the lowering pass, broaden operator coverage and
contribute additional oneDNN JIT-based INT8 kernels.

We will also introduce new fusion patterns for fused operator execution to further
accelerate inference, ensuring robust and production-ready quantization workflows for
ARM within the PyTorch ecosystem.

Conclusion and Future Work

[1] PyTorch 2 Export Quantization.
https://docs.pytorch.org/docs/stable/quantization.html#prototype-pytorch-2-export-quanti
zation

[2] Scalable Vector Extensions, Arm Developer.
https://developer.arm.com/Architectures/Scalable%20
Vector%20Extensions

Links to pull requests

ARM Backend
Integration

Quantization
Granularity & API

Matmul oneDNN
INT8

Convolution
oneDNN INT8 with
u8:s8:f32

Convolution
oneDNN INT8 with
u8:s8:u8

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

References

Figure 1 : PT2E quantization workflow extended for ARM CPUs.

Figure 2: Performance Gains with INT8 PT2E Quantization on ARM CPUs

oneDNN
INT8 kernels - Conv/Matmul

(AArch64 / SVE)

Lowering into Inductor with torch.compile

ACL
INT8 kernels (AArch64 / SVE)

Example Inputfloat_model (Python)

\ / PT2E Standard Flow
Fujitsu’s Contribution

Quantized Model

prepare_pt2e
|

Calibrate / Train
|

convert_pt2e

FX Graph in ATen

export

Pattern-match qconv/qlinear/qmatmul to oneDNN ops

ArmInductorQuantizer

We extend the PyTorch 2 Export (PT2E) quantization stack to enable high-performance
INT8 inference on ARM CPUs. PT2E consolidates quantization support by phasing out
legacy pathways (Eager Mode, TorchScript Graph Mode, FX Graph Mode) into a single
unified stack. The PT2E implementation has also been migrated to torchao, a standalone
library decoupled from PyTorch core, enabling shared reuse of observers, fake quantizers,
and other components.

